DiscoDSP EQ30 v1.0 Users Guide

EQ-30 Specifications

General

EQ30 is based on Alesis M-EQ 230 dual 1/3 octave precision equalizer specs.

Platform	VST (Windows)
Inputs	2
Outputs	2
Precision	32-bit floating point
Allowed sample	Any supported (host dependency)
rates	

Equalizer

Number of bands	2 complete 30 band 1/3 octave equalizers
Band Boost/Cut	±12dB
Controls	25 / 31 / 40 / 50 / 62 / 80 / 100 / 125 / 160 / 200 / 250 / 320 / 400 /
	500 / 640 / 800 / 1k / 1.3k / 1.6k/ 2k / 2.5k / 3.15k / 4k / 5k / 6.2k /
	8k / 10k / 13k / 16k / 20kHz level controls
Monitor	Input, Gain, Output and Text display

GUI

Display	Rack look, with some 3D ray-traced parts.
Controls	60 faders, input and output.
Indicators	Indicator VU Meters showing Input level and Output level.

Key frequencies for instruments

Instrument	Key Frequencies		
Bass Guitar	Attack or pluck is increased at 700 or 1KHz; Bottom		
	added at 60 or 80Hz string noise at 2.5KHz		
Bass Drum	Slap at 2.5KHz; Bottom at 60 or 80Hz		
Snare	Fatness at 240Hz; Crispness at 1 to 2.5KHz; Bottom at 60		
	or 80Hz		
Hi-Hat and Cymbals	Shimmer at 7.5 to 10KHz;		
	Klang or gong sound at about 200Hz		
Toms	Attack at 5KHz; Fullness at 240Hz		
Floor toms	Attack at 5KHz; Fullness at 80 or 120Hz		
Electric Guitar	Body at 240Hz; Clarity at 2.5KHz		
Acoustic Guitar	Body at 240Hz; Clarity at 2.5KHz; Bottom at 80 or		
	120Hz		
Piano	Bass at 80 or 120Hz; Presence at 2.5 to 5KHz; Crispness		
	at 10KHz; Honky-tonk sound at 2.5KHz as bandwidth is		
	narrowed; Resonance at 40 to 60Hz		
Horns	Fullness at 120 or 240Hz; Shrill at 7.5 or 5KHz		
Voice	Fullness at 120Hz; Boominess at 200 to 240Hz; Presence		
	at 5KHz; Sibilance at 7.5KHz; Air at 12 to 15KHz		
Harmonica	Fat at 240Hz, bite at 3-5kHz		
Conga	Resonant ring at 200 to 240Hz; Presence and slap at		
	5KHz		

Whether used to alter the timbre of an instrument, control feedback, or improve speech intelligibility, it's important to know what effect each portion of the frequency spectrum has on the sound.

Audio octave ranges

Frequency range	When used produces this effect	When used too much Produces this effect
16Hz to 60Hz	sense of power, felt more than heard	makes music muddy
60Hz to 250Hz	Fundamentals of rhythm section, EQing can change musical balance making it fat or thin	makes music boomy
250Hz to 2000Hz	Low order harmonics of most musical instruments	telephone quality to music 500 to 1KHz horn-like, 1K to 2KHz tinny, listening fatigue
2KHz to 4KHz	Speech Recognition	3KHz listening fatigue, lisping quality, "m", "v", "b" indistinguishable
4KHz to 6KHz	Clarity and definition of voices and instruments, makes music seem closer to listener, adding 6dB at 5KHz makes entire mix seem 3dB louder	sibilance on vocals
6KHz to 16KHz	Brilliance and clarity of sounds	sibilance, harshness on vocals

DiscoDSP NightShine v1.1 Users Guide

NightShine Specifications

General

NightShine is based on <u>Alesis 3630 peak compressor</u> specs.

Dynamics processor

Number of bands	1
Threshold	-40.0 dB to 0.0dB
Ratio	1.0:1 to 20.0:1
Attack	0.1 ms to 200 ms
Release	50 ms to 3 seconds
Output	-20 dB to 20 dB (make up)
Threshold range	-inf dB. to 0.0dB, exponential curve.
Gain depth	0% to 100%
Switches	Auto make-up, soft-clip and limiter
Monitor	Input, Gain, Output and Text display
	+ Additional depth control for gain scale.

GUI

Display	Vintage look, with some 3D ray-traced parts.		
Controls	Attack, Release, Make-up, Ratio, Threshold, Depth and Auto		
	Make-up, Limit and Soft-Clip.		
Indicators	Indicator VU Meters showing Input level, Gain level and Output level.		

How NightShine works

Threshold (-40dB to 0.0dB)

Sets the level above which signals will be compressed or limited.

Ratio (1.0:1 - 20.0:1 / [limiter mode: infinite:1])

Sets the compression slope, which determines how the output signal will change in relation to the input signal once the input signal exceeds the threshold. The first digit indicates how many dB of input change will cause a 1 dB output change. The higher the ratio, the greater the compression, and the more "squeezed" the sound.

Examples: With a setting of 2:1, a 2 dB input change for signals above the threshold results in a 1 dB output change. With a setting of 1:1, a 1 dB input change results in a 1dB output change (i.e., there is no change to the signal dynamics).

Turning on limit switcher means ratio of infinite:1, so the output level remains virtually constant regardless of input level changes.

Attack (0.1 ms to 200 ms)

This control sets how fast the compressor gain envelope reacts to changes in input level. The longer the attack time, the more of a signal's dynamics are "let through" before the limiting action kicks in. With slower attack times, the limiter responds more to average signal level. This produces a smoother sound that tends to retain dynamic character, but the tradeoff is that the compressor cannot react as rapidly to sudden level shifts.

Examples: Setting a longer attack time with guitar allows more of the pick attack to come through. A longer attack time with kick drum lets through more of the beater "thock." For recording, you may want to trade off response time for smoothness. When used to prevent loudspeaker or power amp clipping, a fast attack time is desirable.

Release (50 ms to 3 seconds)

This control determines how long it takes for the limiter to return to unity gain after going into limiting. With short release times, the limiter tracks every little change in level, producing a potentially uneven or "rippling" effect that decreases dynamics but increases the average output level. Longer release times tend to "squash" the signal more, producing less overall output but retaining more of the signal's dynamics.

Excessive release times can be used as an effect. In the 60s using lots of limiting with long release time on drums was a popular recording technique.

Output (-20 to +20 dB)

The process of reducing dynamics lowers the signal's overall level. Use this control to compensate by adding output gain.

Example: Limiting a signal by 6 dB will make the signal seem approximately 6 dB softer. Compensate by using this control to increase the level.

The 'Auto' (Make Up) switch when turning on applies the approximately compensation needed.

Depth (0 - 100%)

It's used to scale the compression calculated gain, with 0% works like common compressor, with 100% every time the signal raises threshold, the compressor will envelope will attempt to mute audio.

Soft saturation switch

Wave shaper that shapes audio output and results in a more smooth curve rather than hard clipping.

Monitoring

At the left-bottom side of the User Interface we have 3 vu-meters showing the input level (IN), compressor gain (GA) and output level (OU).

Input level (IN) shows the incoming signal level, it's light blue when signal is under threshold level, turns orange when is above threshold level and red when it clips.

Gain level (GA) shows gain level. This is useful to see measure the compressor 'activity', take careful, the less movement in this bar means that your compressor settings are currently working more as just simple gain than dynamic processing.

Output level (OU) shows the processed audio level, turns into red when clip. The plugin DSP is mainly divided in 3 parts, spectral enhancer, multi-band compressor and the limiter, but you don't have to worry about an endless parameter list, since most all are controlled by the plugin itself.

DiscoDSP ThrillMe v2.2.0 Users Guide

ThrillMe Description

ThrillMe is a powerful VST plugin stereo mastering processor, you can use it to enhance and give warmth to your instruments or your full entire mix.

ThrillMe Installation

Double click setup program icon and follow the instructions.

Note: Demo Version is time limited to 10 minutes of processing per session.

ThrillMe Interface

The following picture describes the function for each knob:

How ThrillMe Works

The plugin DSP is mainly divided in 3 parts, spectral enhancer, multi-band compressor and the limiter, but you don't have to worry about an endless parameter list, since most all are controlled by the plugin itself.

You have only to deal with 3 parameters, spectral enhancer amount, compressor threshold and ratio.

The spectral enhancer is a series of shelving filters that works giving presence of harmonic components of the incoming signal, the big knob on the user interface determines amount of this effect, a middle/low value usually does the job.

The second part is the dynamics processor, firstly it splits signal in 3 ways, bass, middle and high bands.

Each band is processed independently (3 parallel compressors), and the plugin provides controls for threshold and ratio of the compressors, but each band have own configuration (attack, release, etc.) set automatically with the plugin depending the band (l/m/h).

The signal is then mixed together again, the mix is limited and wave shaped, and is feed to output.

ThrillMe Specifications

General

Platform	VST (Windows)
Inputs	2
Outputs	2
Precission	32-bit floating point
Working rate	Any supported (host dependency)

Spectral enhancer

Number of bands	4
Band	Bipole shelving IIR filter.
specification	
Types	(1 x Lowshelf + 2 x Peaking + 1 x Hishelf) x 2 (stereo)
Routing	Serial
Adjustment	Auto

Dynamics processor

Ν	um	ber	of	banc	ls 3	,
---	----	-----	----	------	------	---

Splitting filter	Single-pole IIR/-6dB oct x 2 (stereo) x 3 (bands)
Band range	0-1kHz/1kHz-10kHz/10kHz-Inf (with -6dB/oct crossover rolloff)
Algorithm	VADP - Virtual Analog Dynamics Processing.
Envelope	Attack / Release (Self adjusted)
Ratio	from 1:1 to 1:128
Threshold range	-inf dB. to 0.0dB, exponential curve.

Limiter

Type	Mathematical waveshaping.

Gui

Display	Vintage look, 3D raytraced gui.
Controls	Threshold, ratio and spectral enhancement amount.
Indicators	Valve showing compressor activity.